Decomposition of linear automata over residue rings into shift-registers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings

The construction of shortest feedback shift registers for a finite sequence S1, . . . , SN is considered over the finite ring Zpr . A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1, . . . , SN , thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and...

متن کامل

Shift Registers Fool Finite Automata

Let x be an m-sequence, a maximal length sequence produced by a linear feedback shift register. We show that the nondeterministic automatic complexity AN (x) is close to maximal: n/2 − AN (x) = O(log 2 n), whereas Hyde has shown AN (y) ≤ n/2 + 1 for all sequences y.

متن کامل

Gray Images of Constacyclic Codes over some Polynomial Residue Rings

Let  be the quotient ring    where  is the finite field of size   and  is a positive integer. A Gray map  of length  over  is a special map from  to ( . The Gray map   is said to be a ( )-Gray map if the image of any -constacyclic code over    is a -constacyclic code over the field   . In this paper we investigate the existence of   ( )-Gray maps over . In this direction, we find an equivalent ...

متن کامل

Feedback Shift Registers as Cellular Automata Boundary Conditions

We present a new design for random number generation. The outputs of linear feedback shift registers (LFSRs) act as continuous inputs to the two boundaries of a one-dimensional (1-D) Elementary Cellular Automata (ECA). The results show superior randomness features and the output string has passed the Diehard statistical battery of tests. The design is good candidate for parallel random number g...

متن کامل

Structured LDPC Codes over Integer Residue Rings

This paper presents a new class of low-density parity-check (LDPC) codes over Z2a represented by regular, structured Tanner graphs. These graphs are constructed using Latin squares defined over a multiplicative group of a Galois ring, rather than a finite field. Our approach yields codes for a wide range of code rates and more importantly, codes whose minimum pseudocodeword weights equal their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1986

ISSN: 0304-3975

DOI: 10.1016/0304-3975(86)90163-5